Dynamics of EEG rhythms support distinct visual selection mechanisms in parietal cortex: a simultaneous transcranial magnetic stimulation and EEG study.

نویسندگان

  • Paolo Capotosto
  • Sara Spadone
  • Annalisa Tosoni
  • Carlo Sestieri
  • Gian Luca Romani
  • Stefania Della Penna
  • Maurizio Corbetta
چکیده

Using repetitive transcranial magnetic stimulation (rTMS), we have recently shown a functional anatomical distinction in human parietal cortex between regions involved in maintaining attention to a location [ventral intraparietal sulcus (vIPS)] and a region involved in shifting attention between locations [medial superior parietal lobule (mSPL)]. In particular, while rTMS interference over vIPS impaired target discrimination at contralateral attended locations, interference over mSPL affected performance following shifts of attention regardless of the visual field (Capotosto et al., 2013). Here, using rTMS interference in conjunction with EEG recordings of brain rhythms during the presentation of cues that indicate to either shift or maintain spatial attention, we tested whether this functional anatomical segregation involves different mechanisms of rhythm synchronization. The transient inactivation of vIPS reduced the amplitude of the expected parieto-occipital low-α (8-10 Hz) desynchronization contralateral to the cued location. Conversely, the transient inactivation of mSPL, compared with vIPS, reduced the high-α (10-12 Hz) desynchronization induced by shifting attention into both visual fields. Furthermore, rTMS induced a frequency-specific delay of task-related modulation of brain rhythms. Specifically, rTMS over vIPS or mSPL during maintenance (stay cues) or shifting (shift cues) of spatial attention, respectively, caused a delay of α parieto-occipital desynchronization. Moreover, rTMS over vIPS during stay cues caused a delay of δ (2-4 Hz) frontocentral synchronization. These findings further support the anatomo-functional subdivision of the dorsal attention network in subsystems devoted to shifting or maintaining covert visuospatial attention and indicate that these mechanisms operate in different frequency channels linking frontal to parieto-occipital visual regions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differential contribution of right and left parietal cortex to the control of spatial attention: a simultaneous EEG-rTMS study.

We have recently shown that interference with repetitive transcranial magnetic stimulation (rTMS) of right posterior intraparietal sulcus (IPS) cortex during the allocation of spatial attention leads to abnormal desynchronization of anticipatory (pretarget) electroencephalographic alpha rhythms (8-12 Hz) in occipital-parietal cortex and the detection of subsequently presented visual targets (Ca...

متن کامل

Prediction of the response to repetitive transcranial magnetic stimulation by spectral powers of prefrontal regions of brain.

Introduction: Quantitative assessments of the effects induced by repetitive transcranial magnetic stimulation (rTMS) are crucial to develop more efficient and personalized treatments. Objectives: To determine the spectral powers of different subbands of EEG correlated with treatment response to rTMS.   Materials and Methods: the spectral powers of different...

متن کامل

Sounds Reset Rhythms of Visual Cortex and Corresponding Human Visual Perception

An event in one sensory modality can phase reset brain oscillations concerning another modality. In principle, this may result in stimulus-locked periodicity in behavioral performance. Here we considered this possible cross-modal impact of a sound for one of the best-characterized rhythms arising from the visual system, namely occipital alpha-oscillations (8-14 Hz). We presented brief sounds an...

متن کامل

Dynamic Parieto-premotor Network for Mental Image Transformation Revealed by Simultaneous EEG and fMRI Measurement

Previous studies have suggested that the posterior parietal cortices and premotor areas are involved in mental image transformation. However, it remains unknown whether these regions really cooperate to realize mental image transformation. In this study, simultaneous EEG and fMRI were performed to clarify the spatio-temporal properties of neural networks engaged in mental image transformation. ...

متن کامل

Synchronous and opposite roles of the parietal and prefrontal cortices in bistable perception: a double-coil TMS-EEG study.

Bistable perception occurs when a stimulus is ambiguous and has two distinct interpretations that spontaneously alternate in observers' consciousness. Studies using functional magnetic resonance imaging, electroencephalography (EEG), and transcranial magnetic stimulation (TMS) in healthy subjects and patient studies point towards a right fronto-parietal network regulating the balance between pe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 35 2  شماره 

صفحات  -

تاریخ انتشار 2015